2019
DOI: 10.1039/c8nr09332f
|View full text |Cite
|
Sign up to set email alerts
|

Nanoparticles affect bacterial colonies’ optical diffraction patterns

Abstract: Distinct optical diffraction patterns of bacterial colonies in response to SPIONs with various concentrations and surface chemistries are formed.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 29 publications
0
3
0
1
Order By: Relevance
“…For example, plasmonic nanomaterials such as gold and silver NPs, which have surface plasmon resonance (SPR) properties, are widely used for bacterial detection. [ 13 ] Once modified with recognition elements (e.g., antibody, phage, or aptamer), they are used for detecting particular bacteria. After specific binding to bacteria (with a sensitivity/detection range for a visible change: 10 3 –10 6 bacteria), mediated by targeting ligands/recognition elements, NPs show plasmon peak shift or aggregation, leading to color changes visible to the naked eye.…”
Section: Nanotechnology‐based Bacteria Detectionmentioning
confidence: 99%
See 1 more Smart Citation
“…For example, plasmonic nanomaterials such as gold and silver NPs, which have surface plasmon resonance (SPR) properties, are widely used for bacterial detection. [ 13 ] Once modified with recognition elements (e.g., antibody, phage, or aptamer), they are used for detecting particular bacteria. After specific binding to bacteria (with a sensitivity/detection range for a visible change: 10 3 –10 6 bacteria), mediated by targeting ligands/recognition elements, NPs show plasmon peak shift or aggregation, leading to color changes visible to the naked eye.…”
Section: Nanotechnology‐based Bacteria Detectionmentioning
confidence: 99%
“…The specific binding of NPs to bacteria is also monitored using optical imaging, electrochemical sensing, and spectrometry. [ 13 , 14 ] In addition, label‐free array‐based sensors have also been developed to detect and discriminate bacteria and/or analytes. They consist of cross‐reactive indicators that preferentially interact with bacteria/analytes.…”
Section: Nanotechnology‐based Bacteria Detectionmentioning
confidence: 99%
“…UV kaynağı altındaki bekleme süresi 240 saate ulaştığında renk açılmaları %93'e ulaşırken, titanyum dioksit ilavesi renk açılmalarını %50'ye ulaşan oranda arttırdığı belirlenmiştir. Staphylococcus aureus ve Escherichia coli bakterilerinin mikrografları, oluşturdukları koloniler ve desenleri (patern) Şekil 11'de görülmektedir [15]. Gümüşün antibakteriyel özelliğinin sadece mikroorganizmaların gümüşü adsorbe etmelerinden kaynaklanmadığını aynı zamanda gümüş iyonunun çözelti içinde serbestçe dolaşmadığı ve inorganik bir bileşik içine yerleştirildiği durumlarda da mikroorganizmaların gümüşü adsorbe etmeden de kolonileşme ve çoğalma özelliklerini yitirdiklerini gözlemişlerdir.…”
Section: Bulgular Ve Tartışmaunclassified
“…Therefore, extensive research has been conducted to develop a rapid, reliable, reagent-free, and user-friendly system. We and others have demonstrated optical techniques that utilize the light scattering or diffraction pattern of a bacterial colony grown on agar plates for bacterial identification [ 3 , 4 , 5 , 6 , 7 , 8 , 9 ]. The comparison of these technologies are summarized in the Supplementary Materials (Table S1) .…”
Section: Introductionmentioning
confidence: 99%