This paper dealt with the condensing technology of an LED light source that uses a parabolic reflector to replace a searchlight equipped with a xenon lamp. A ray-tracing simulation was conducted to analyze the influence of the diameter of the reflector and the size of the light source on light condensing. The combination of a parabolic reflector with a diameter of 620 mm and a focal distance of 220 mm, and a 9 mm multi-chip package (MCP) with a luminous flux of 7,000 lm showed the narrowest beam angle. The luminous intensity at the center was measured at 7.7×10 6 cd.The distance between the light source and the point where the illuminance was 1 lx was calculated to be 2.8 km. The power consumption of the system was 95 W, which is only 9.5% of that of the 1 kW xenon searchlight, and the beam angle was 1.03°. In a site experiment, it was confirmed that the light ray reflected from the LED searchlight proceeds forward without any diffusion because of the narrow beam angle.