The paper addresses the controversial question of the role of clay-sized dust in the formation of paleosols in coastal eolianites, Israel. At the Habonim type section, the pedocomplex dated by archaeology and luminescence to 45-135 ka ago shows at least three paleosols, not separated by non-soil sediments. The oldest reddish paleosol (apparently related to MIS 5) is magnetically enhanced, leached from carbonates, with signs of bioturbation and strongly aged clay coatings. The reddening is due to very fine, ~20 nm, poorly crystallized, superparamagnetic (SP) hematite, as determined by Mössbauer studies. In subsoil, lithorelics of eolianite are found. Over time, the soil surface aggraded due to accelerated fine dust accumulation alongside local slope wash. On younger materials formed magnetically depleted vertisols, dominated by smectite-type expandable paramagnetic clays. In thin sections, vertisols exhibit strong stipple-speckled and striated b-fabric due to shrink-swell processes, impregnative calcite nodules and Fe-Mn redistribution. The uppermost hydric vertisol shows the strongest expression of juxtaposed features of recurrent calcite and Fe precipitation. This paleosol developed on colluvial soil materials, as evidenced by mixing of clay coated and uncoated grains of quartz and calcite allochems. Mössbauer spectra show high amounts of Fe(III) incorporated in the clay structure, low amounts of SP goethite and absence of SP hematite. Whilst magnetic susceptibility drops in vertisols to minimal values, ferrimagnetic grain sizes increase. The latter along with differences in the
Towards Understanding Paleosols in Southern LevantineEolianites: Integration of Micromorphology,