The sulfur-doped graphene oxide/graphite oxide composite material was synthesized in an original way, and a detailed study of its structural arrangement was carried out using XRD and Raman spectroscopy. Negative differential resistive properties of the obtained material were observed on the current-voltage curve at room temperature as a result of limited proton hopping through water molecules adsorbed on the hydrophilic surface of graphene oxide layers in the presence of a sulfur-enriched graphite oxide component with high electron conductivity, which promotes spatial charge separation and increases the efficiency of H+ transport. The obtained result offers a new way for the one-pot synthesis of new graphene-based composite materials with a wide range of possible applications.