2018
DOI: 10.24891/ni.14.11.2064
|View full text |Cite
|
Sign up to set email alerts
|

Neural network modeling of development trends of physical culture and sports in the Russian regions as a driver of the national socio-economic growth

Abstract: Ключевые слова: экономический рост, человеческий капитал, физическая культура и спорт, кластерный анализ, нейронные сети Аннотация Предмет. Особенности динамики развития физической культуры и спорта в регионах Российской Федерации. Анализ современного состояния физической культуры и спорта, характеризующего человеческий капитал, который является одним из приоритетных внутренних факторов экономического потенциала России, важен для обеспечения национальной безопасности и социально-экономического роста страны. Це… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 0 publications
0
2
0
Order By: Relevance
“…A particular type of neural networks, Kohonen self-organising maps (SOMs) (Kohonen, 1982;Kohonen, 1990), was chosen for the study. This type was chosen because of the following features of such neural networks (Perova and Perova, 2018;Letiagina, et al, 2020;Carboni, Russu, 2015): a) there are no model limitations when analysing multidimensional statistical data; b) SOMs do not require any external intervention in the learning process; c) their learning algorithms allow projecting multidimensional input data space with the account of topology into either two-dimensional space or into three-dimensional space. This enables visualisation of the results obtained.…”
Section: Methodsmentioning
confidence: 99%
“…A particular type of neural networks, Kohonen self-organising maps (SOMs) (Kohonen, 1982;Kohonen, 1990), was chosen for the study. This type was chosen because of the following features of such neural networks (Perova and Perova, 2018;Letiagina, et al, 2020;Carboni, Russu, 2015): a) there are no model limitations when analysing multidimensional statistical data; b) SOMs do not require any external intervention in the learning process; c) their learning algorithms allow projecting multidimensional input data space with the account of topology into either two-dimensional space or into three-dimensional space. This enables visualisation of the results obtained.…”
Section: Methodsmentioning
confidence: 99%
“…In the Russian Federation and abroad, many commercial physical education and sports organizations continue to be created: physical education and health clubs and associations, fitness centers, shaping clubs, massage centers, gyms and other facilities. Improving competitiveness in the sports field as a special area of innovation and entrepreneurship, as well as training highly skilled athletes, are among the priority areas for the development of physical education and sports in the regions of Russia [8,9]. Business in sports is socially significant.…”
Section: Introductionmentioning
confidence: 99%