The neural network analysis of physical education and sports in the regions of Russia is carried out with the help of multidimensional statistical data of the Ministry of Sports of the Russian Federation. The research tool for data clustering was neural networks implemented in the analytical package Deductor-Kohonen self-organizing maps (SOM). The distribution of Russian regions by five clusters is obtained. It is shown that there is an uneven development of sports infrastructure. The regions with the highest development rates are identified. The results obtained are of practical importance for the strategic planning of the development of physical education and sports essential for improving the quality of human capital and ensuring the economic security of the country.
With the use of neural network modeling, the authors analyzed the current state of youth sports in rural areas of Russian regions, which characterizes human capital. The simulation uses neural networks implemented in the Deductor package – self-organizing Kohonen maps. As a result of the analysis, the authors obtained a distribution of regions in five clusters. The composition and characteristics of each cluster are presented. The regions with the highest indicators of sports development in rural areas have been identified. This paper shows the influence of the indicators considered on human capital, which is one of the dominant internal factors of socio-economic potential of territories. The results of the research are of practical significance for a comparative analysis of the development of children’s and youth sports in the regions of Russia and can be taken into account in the strategic planning of the development of the sports industry in the context of increasing the quality of human capital.
Ключевые слова: экономический рост, человеческий капитал, физическая культура и спорт, кластерный анализ, нейронные сети Аннотация Предмет. Особенности динамики развития физической культуры и спорта в регионах Российской Федерации. Анализ современного состояния физической культуры и спорта, характеризующего человеческий капитал, который является одним из приоритетных внутренних факторов экономического потенциала России, важен для обеспечения национальной безопасности и социально-экономического роста страны. Цели. Анализ особенностей динамики развития физической культуры и спорта в регионах Российской Федерации с помощью нейронных сетей. Рассмотрение и анализ данных Министерства спорта Российской Федерации о состоянии физической культуры и спорта в регионах России в интересах повышения ожидаемой продолжительности жизни населения и социально-экономического развития территорий. Методология. Нейросетевое моделирование с использованием показателей, описывающих динамику развития физической культуры и спорта в регионах РФ за период 2012-2016 гг. Моделирование проведено с применением реализованных в пакете Deductor нейронных сетей -самоорганизующихся карт Кохонена, обучаемых без учителя. Результаты. Определены особенности динамики деятельности регионов России в сфере физической культуры и спорта, показан неравномерный характер их развития. По уровню этой деятельности получено распределение регионов по четырем кластерам, в которых сформировались ядра кластеров с неизменным составом регионов. Наибольшее количество регионов вошло в состав ядра кластера с показателями развития физической культуры и спорта на уровне средних значений показателей по России. При этом ядра кластеров регионов-лидеров, как и сами эти кластеры, оказались малочисленными. Выводы. В регионах Российской Федерации наблюдается неравномерный характер развития физической культуры и спорта как одного из показателей процесса формирования человеческого капитала. Для стратегического планирования социально-экономического развития регионов России необходимо принятие комплексных мер, способствующих стимулированию активности регионов в данной сфере деятельности.
Subject. The article investigates methodological approaches to the analysis of economic potential of regions, considering the achievement of the national goal of sustainable development of the Russian Federation in conditions of grand challenges. Objectives. The aim is to study the dynamics of economic activity in Russian regions, using artificial intelligence methods, to analyze the innovative development of the Russian economy in the face of grand challenges. Methods. The study rests on the analysis of development indicators of the regional economy of Russia. We propose a cluster analysis of the regional economy development, free from model constraints, based on neural network modeling, which enables to assess the dynamics of development and ranking of Russian regions, according to the totality of considered indicators. We apply Kohonen self-organizing maps as a promising means of clustering and visual embodiment of multidimensional statistical data. Results. The neural network modeling enabled to segregate 85 regions of the Russian Federation into four compact groups. We estimated the significance of each indicator in the formation of clusters, revealed a strong difference in the number of regions in the clusters. In the period under review, some regions were part of the same corresponding cluster. The paper presents the dynamics of average values of the studied indicators in clusters for 2018–2020. Conclusions. We demonstrate a disproportion of economic development of Russian regions. It requires an individual approach to regional economy’s strategy development, corresponding KPIs, and measures to stimulate economic activity in the field of innovation, investment, and introduction of research results in the regions of the Russian Federation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.