Probabilistic spin logic (PSL) based on networks of binary stochastic neurons (or p-bits) has been shown to provide a viable framework for many functionalities including Ising computing, Bayesian inference, invertible Boolean logic and image recognition. This paper presents a hardware building block for the PSL architecture, consisting of an embedded MTJ and a capacitive voltage adder of the type used in neuMOS. We use SPICE simulations to show how identical copies of these building blocks (or weighted p-bits) can be interconnected with wires to design and solve a small instance of the NP-complete Subset Sum Problem fully in hardware.