Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of voltage-gated sodium channels (Na v s) expressed in dorsal root ganglion (DRG) sensory neurons. The mechanisms underlying the altered expression of Na v s remain unknown. This study investigated the role of the E3 ubiquitin ligase NEDD4-2, which is known to ubiquitylate Na v s, in the pathogenesis of neuropathic pain in mice. The spared nerve injury (SNI) model of traumatic nerve injury-induced neuropathic pain was used, and an Na v 1.7-specific inhibitor, ProTxII, allowed the isolation of Na v 1.7-mediated currents. SNI decreased NEDD4-2 expression in DRG cells and increased the amplitude of Na v 1.7 and Na v 1.8 currents. The redistribution of Na v 1.7 channels toward peripheral axons was also observed. Similar changes were observed in the nociceptive DRG neurons of Nedd4L knockout mice (SNS-Nedd4L -/-). SNS-Nedd4L -/-mice exhibited thermal hypersensitivity and an enhanced second pain phase after formalin injection. Restoration of NEDD4-2 expression in DRG neurons using recombinant adenoassociated virus (rAAV2/6) not only reduced Na v 1.7 and Na v 1.8 current amplitudes, but also alleviated SNI-induced mechanical allodynia. These findings demonstrate that NEDD4-2 is a potent posttranslational regulator of Na v s and that downregulation of NEDD4-2 leads to the hyperexcitability of DRG neurons and contributes to the genesis of pathological pain.