Abstract-Brain-Computer Interfaces (BCI) based on the voluntary modulation of sensorimotor rhythms (SMRs) induced by motor imagery are very prominent because allow a continuous control of the external device. Nevertheless, the design of a SMR-based BCI system that provides every user with a reliable BCI control from the first session, i.e., without extensive training, is still a big challenge. Considerable advances in this direction have been made by the machine learning coadaptive calibration approach, which combines online adaptation techniques with subject learning in order to offer the user a feedback from the beginning of the experiment. Recently, based on offline analyses, we proposed the novel Common Spatial Patterns Patches (CSPP) technique as a good candidate to improve the co-adaptive calibration. CSPP is an ensemble of localized spatial filters, each of them optimized on subjectspecific data by CSP analysis. Here, the evaluation of CSPP in online operation is presented for the first time. Results on three BCI-naive participants show indeed promising results. All three users reach the threshold criterion of 70% accuracy within one session, even one candidate for whom the weak SMR at rest predicted deficient BCI control. Concurrent recordings of the SMR during a relax condition as well as the course of BCI performance indicate a clear learning effect.