2022
DOI: 10.1038/s41598-022-18097-9
|View full text |Cite
|
Sign up to set email alerts
|

New definitions of human lymphoid and follicular cell entities in lymphatic tissue by machine learning

Abstract: Histological sections of the lymphatic system are usually the basis of static (2D) morphological investigations. Here, we performed a dynamic (4D) analysis of human reactive lymphoid tissue using confocal fluorescent laser microscopy in combination with machine learning. Based on tracks for T-cells (CD3), B-cells (CD20), follicular T-helper cells (PD1) and optical flow of follicular dendritic cells (CD35), we put forward the first quantitative analysis of movement-related and morphological parameters within hu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
3
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 47 publications
0
3
0
2
Order By: Relevance
“…Real-time imaging microscopy on human lymph nodes has recorded the velocities and 3D tracks of individual cells [72], while automated image analysis is able to measure the distribution of dimension of lymphatic compartments and the abundances of cells in the departments [57]. We plan to feed quantitative data into our PN model in order to develop a quantitative model.…”
Section: Discussionmentioning
confidence: 99%
“…Real-time imaging microscopy on human lymph nodes has recorded the velocities and 3D tracks of individual cells [72], while automated image analysis is able to measure the distribution of dimension of lymphatic compartments and the abundances of cells in the departments [57]. We plan to feed quantitative data into our PN model in order to develop a quantitative model.…”
Section: Discussionmentioning
confidence: 99%
“…To understand the interrelation between cellular networks and phenotypic changes of organs, e.g., lymph nodes, it is indispensable to understand underlying cell dynamics. 28 Investigating large amounts of cells in time and space, machine learning turned out to be helpfull. 28 Cellular interactions in some organs, such as the brain, may be relatively stable and static.…”
Section: Digitization and Computer-assisted Detection In The Context ...mentioning
confidence: 99%
“… 28 Investigating large amounts of cells in time and space, machine learning turned out to be helpfull. 28 Cellular interactions in some organs, such as the brain, may be relatively stable and static. In the immune system, the movements of most cells are fast, and interactions are highly dynamic.…”
Section: Digitization and Computer-assisted Detection In The Context ...mentioning
confidence: 99%
“…Im Rahmen der Arbeit konnte gezeigt werden, dass die Analyse zweidimensional gescannter Dünnschnitte und dreidimensional gescannter Dickschnitte unterschiedliche Einblicke in die Konstitution humaner, lymphoider Gewebeproben ermöglicht. Darüber hinaus entstand in den letzten Jahren die Möglichkeit der Visualisierung humaner Gewebeproben in Raum und Zeit [10,11,12,133].…”
Section: Digital-pathologisches Profil Des Hodgkin-lymphomsunclassified
“…Es lassen sich Aussagen über die Zellbewegung treffen, um beispielsweise so die zelluläre Fitness zu beurteilen. Abschließend ermöglicht die 4D-Histologie eine mögliche Definition neuer funktionelle Subgruppen, welche über die reine CD-Klassifikation hinausgeht [133]. Dies ist in der klinischen Routine zuweilen nicht darstellbar.…”
Section: Digital-pathologisches Profil Des Hodgkin-lymphomsunclassified