AimsThe examination of histological sections is still the gold standard in diagnostic pathology. Important histopathological diagnostic criteria are nuclear shapes and chromatin distribution as well as nucleus-cytoplasm relation and immunohistochemical properties of surface and intracellular proteins. The aim of this investigation was to evaluate the benefits and drawbacks of three-dimensional imaging of CD30+ cells in classical Hodgkin Lymphoma (cHL) in comparison to CD30+ lymphoid cells in reactive lymphoid tissues.Materials and resultsUsing immunoflourescence confocal microscopy and computer-based analysis, we compared CD30+ neoplastic cells in Nodular Sclerosis cHL (NScCHL), Mixed Cellularity cHL (MCcHL), with reactive CD30+ cells in Adenoids (AD) and Lymphadenitis (LAD). We confirmed that the percentage of CD30+ cell volume can be calculated. The amount in lymphadenitis was approx. 1.5%, in adenoids around 2%, in MCcHL up to 4,5% whereas the values for NScHL rose to more than 8% of the total cell cytoplasm. In addition, CD30+ tumour cells (HRS-cells) in cHL had larger volumes, and more protrusions compared to CD30+ reactive cells. Furthermore, the formation of large cell networks turned out to be a typical characteristic of NScHL.ConclusionIn contrast to 2D histology, 3D laser scanning offers a visualisation of complete cells, their network interaction and spatial distribution in the tissue. The possibility to differentiate cells in regards to volume, surface, shape, and cluster formation enables a new view on further diagnostic and biological questions. 3D includes an increased amount of information as a basis of bioinformatical calculations.
This study deals with 3D laser investigation on the border between the human lymph node T-zone and germinal centre. Only a few T-cells specific for antigen selected B-cells are allowed to enter germinal centres. This selection process is guided by sinus structures, chemokine gradients and inherent motility of the lymphoid cells. We measured gaps and wall-like structures manually, using IMARIS, a 3D image software for analysis and interpretation of microscopy datasets. In this paper, we describe alpha-actin positive and semipermeable walls and wall-like structures that may hinder T-cells and other cell types from entering germinal centres. Some clearly defined holes or gaps probably regulate lymphoid traffic between T- and B-cell areas. In lymphadenitis, the morphology of this border structure is clearly defined. However, in case of malignant lymphoma, the wall-like structure is disrupted. This has been demonstrated exemplarily in case of angioimmunoblastic T-cell lymphoma. We revealed significant differences of lengths of the wall-like structures in angioimmunoblastic T-cell lymphoma in comparison with wall-like structures in reactive tissue slices. The alterations of morphological structures lead to abnormal and less controlled T- and B-cell distributions probably preventing the immune defence against tumour cells and infectious agents by dysregulating immune homeostasis.
Histological sections of the lymphatic system are usually the basis of static (2D) morphological investigations. Here, we performed a dynamic (4D) analysis of human reactive lymphoid tissue using confocal fluorescent laser microscopy in combination with machine learning. Based on tracks for T-cells (CD3), B-cells (CD20), follicular T-helper cells (PD1) and optical flow of follicular dendritic cells (CD35), we put forward the first quantitative analysis of movement-related and morphological parameters within human lymphoid tissue. We identified correlations of follicular dendritic cell movement and the behavior of lymphocytes in the microenvironment. In addition, we investigated the value of movement and/or morphological parameters for a precise definition of cell types (CD clusters). CD-clusters could be determined based on movement and/or morphology. Differentiating between CD3- and CD20 positive cells is most challenging and long term-movement characteristics are indispensable. We propose morphological and movement-related prototypes of cell entities applying machine learning models. Finally, we define beyond CD clusters new subgroups within lymphocyte entities based on long term movement characteristics. In conclusion, we showed that the combination of 4D imaging and machine learning is able to define characteristics of lymphocytes not visible in 2D histology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.