Truffle fungi are well known for their enticing aromas partially emitted by microbes colonizing truffle fruiting bodies. The identity and diversity of these microbes remain poorly investigated, because few studies have determined truffle-associated bacterial communities while considering only a small number of fruiting bodies. Hence, the factors driving the assembly of truffle microbiomes are yet to be elucidated. Here we investigated the bacterial community structure of more than 50 fruiting bodies of the black truffle
Tuber aestivum
in one French and one Swiss orchard using 16S rRNA gene amplicon high-throughput sequencing. Bacterial communities from truffles collected in both orchards shared their main dominant taxa: while 60% of fruiting bodies were dominated by α-Proteobacteria, in some cases the β-Proteobacteria or the Sphingobacteriia classes were the most abundant, suggesting that specific factors (i.e., truffle maturation and soil properties) shape differently truffle-associated microbiomes. We further attempted to assess the influence in truffle microbiome variation of factors related to collection season, truffle mating type, degree of maturation, and location within the truffle orchards. These factors had differential effects between the two truffle orchards, with season being the strongest predictor of community variation in the French orchard, and spatial location in the Swiss one. Surprisingly, genotype and fruiting body maturation did not have a significant effect on microbial community composition. In summary, our results show, regardless of the geographical location considered, the existence of heterogeneous bacterial communities within
T. aestivum
fruiting bodies that are dominated by three bacterial classes. They also indicate that factors shaping microbial communities within truffle fruiting bodies differ across local conditions.