Object
Early innervation by sensory nerves has been proposed to prevent atrophy of chronically denervated muscle, but conventional end-to-end (ETE) neurorrhaphy has been demonstrated to have adverse effects on muscle contractile function. The aim of the present study was to investigate the potential for modified sensory nerve protection in reverse end-to-side (ETS) neurorrhaphy as a way of improving the functional recovery of denervated muscle.
Methods
Four groups of rats underwent surgical denervation of the tibial nerve projecting to the right hindlimbs (Group 1, unprotected controls; Group 2, positive control [immediate repair without delayed denervation]; Group 3, ETS protected; and Group 4, ETE protected). The proximal and distal stumps of the tibial nerve were ligated in all animals except for those in the immediate-repair group. Other animals underwent denervation without sural nerve protection, or with ETE or ETS neurorrhaphy. The ETE- and ETS-protected and unprotected groups underwent an additional surgery in which the trimmed proximal and distal tibial nerve stumps were sutured together. After 3 months of recovery, the tibial function index was determined, and electrophysiological, histological, and morphometric parameters were assessed.
Results
Significant muscle atrophy was observed in the unprotected group, while a well-preserved ultrastructure was observed for the gastrocnemius muscle in the ETE- and ETS-protected groups. Enhanced recovery in the ETS-protected group was indicated by the tibial function index, motor nerve conduction velocity, muscle contractile force tests, and the histological results. In contrast, early sensory nerve protection in ETE neurorrhaphy impaired the recovery of the regenerated axons and diminished the contractile force of the denervated muscle.
Conclusions
Early sensory protection in reverse ETS neurorrhaphy is an effective method for improving the functional recovery of chronically denervated muscle following peripheral nerve injury in rats.