In this work, six (A-F) nitramino (-NHNO)-substituted ditetrazole 2-N-oxides with different bridging groups (-CH-, -CH-CH-, -NH-, -N=N-, and -NH-NH-) were designed. The six compounds were based on the parent compound tetrazole 2-N-oxide, which possesses a high oxygen balance and high density. The structure, heat of formation, density, detonation properties (detonation velocity D and detonation pressure P), and the sensitivity of each compound was investigated systematically via density functional theory, by studying the electrostatic potential, and using molecular mechanics. The results showed that compounds A-F all have outstanding energetic properties (D: 9.1-10.0 km/s; P: 38.0-46.7 GPa) and acceptable sensitivities (h : 28-37 cm). The bridging group present was found to greatly affect the detonation performance of each ditetrazole 2-N-oxide, and the compound with the -NH-NH- bridging group yielded the best results. Indeed, this compound (F) was calculated to have comparable sensitivity to the famous and widely used high explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), but with values of D and P that were about 8.7% and 19.4% higher than those for HMX, respectively. The present study shows that tetrazole 2-N-oxide is a useful parent compound which could potentially be used in the design of new and improved high-energy compounds to replace existing energetic compounds such as HMX.