Conventional intravascular ultrasound (IVUS) uses piezoelectric transducers to electrically generate and receive ultrasound. However, it remains a challenge to achieve large bandwidth for high resolution without compromising imaging depth. We report an all-optical IVUS (AO-IVUS) imaging system using picosecond laser pulse–pumped carbon composite for ultrasound excitation and π-phase–shifted fiber Bragg gratings for ultrasound detection. Using this all-optical technique, we achieved ultrawide-bandwidth (147%) and high-resolution (18.6 micrometers) IVUS imaging, which is unattainable by conventional technique. Imaging performance has been characterized in phantoms, presenting 18.6-micrometer axial resolution, 124-micrometer lateral resolution, and 7-millimeter imaging depth. Rotational pullback imaging scans are performed in rabbit iliac artery, porcine coronary artery, and rabbit arteries with drug-eluting metal stents, in parallel with commercial intravenous ultrasound scans as reference. Results demonstrated the advantages of high-resolution AO-IVUS in delineating details in vascular structures, showing great potential in clinical applications.