One of the fundamental waves in magnetized plasmas is the shear Alfvén wave. This wave is responsible for rearranging current systems and, in fact all low frequency currents in magnetized plasmas are shear waves. It has become apparent that Alfvén waves are important in a wide variety of physical environments. Shear waves of various forms have been a topic of experimental research for more than fifteen years in the large plasma device (LAPD) at UCLA. The waves were first studied in both the kinetic and inertial regimes when excited by fluctuating currents with transverse dimension on the order of the collisionless skin depth. Theory and experiment on wave propagation in these regimes is presented, and the morphology of the wave is illustrated to be dependent on the generation mechanism. Three-dimensional currents associated with the waves have been mapped. The ion motion, which closes the current across the magnetic field, has been studied using laser induced fluorescence. The wave propagation in inhomogeneous magnetic fields and density gradients is presented as well as effects of collisions and reflections from boundaries. Reflections may result in Alfvénic field line resonances and in the right conditions maser action. The waves occur spontaneously on temperature and density gradients as hybrids with drift waves. These have been seen to affect cross-field heat and plasma transport. Although the waves are easily launched with antennas, they may also be generated by secondary processes, such as Cherenkov radiation. This is the case when intense shear Alfvén waves in a background magnetoplasma are produced by an exploding laser-produced plasma. Time varying magnetic flux ropes can be considered to be low frequency shear waves. Studies of the interaction of multiple ropes and the link between magnetic field line reconnection and rope dynamics are revealed. This manuscript gives us an overview of the major results from these experiments and provides a modern prospective for the earlier studies of shear Alfvén waves. V