Abstract.Starting from multidimensional consistency of non-commutative lattice-modified Gel'fand-Dikii systems, we present the corresponding solutions of the functional (settheoretic) Yang-Baxter equation, which are non-commutative versions of the maps arising from geometric crystals. Our approach works under additional condition of centrality of certain products of non-commuting variables. Then we apply such a restriction on the level of the Gel'fand-Dikii systems what allows to obtain non-autonomous (but with central non-autonomous factors) versions of the equations. In particular, we recover known non-commutative version of Hirota's lattice sine-Gordon equation, and we present an integrable non-commutative and non-autonomous lattice modified Boussinesq equation.