The flow inside a precessing fluid cavity has been given particular attention since the end of the 19th century in geophysical and industrial contexts. The present study aims at shedding light on the underlying mechanism by which the flow inside a precessing cylindrical annulus transitions from laminar to multiple scale complex structures. We address this problem experimentally using ultrasonic Doppler velocimetry to diagnose the fluid velocity in a rotating and precessing cylindrical annulus. When precession is weak, the flow can be described as a superposition of forced inertial modes. Above a critical value of the precession rate, the forced flow couples with two free inertial modes satisfying triadic resonance conditions, leading to the classical growth and collapse. Using a Bayesian approach, we extract the wavenumber, frequency, growth rate and amplitude of each mode involved in the instability. In some cases, we observe for the first time ever experimentally two pairs of free modes coexisting with the forced flow. At larger precession rates, we do not observe triadic resonance any more, instead we observe several harmonics whose frequencies are integer multiples of the rotation frequency.