In this paper, a general interfacial thermal contact model is proposed to investigate the heat conduction characteristics at the interface of bilayered saturated soils. The semianalytical solutions of thermal consolidation of the bilayered saturated soils considering thermo-osmosis effect under ramp-type heating are derived by using the Laplace transform. Then, the expressions of the temperature increment, excess pore water pressure, and displacement are obtained in time domain by using the Crump's method. Comparisons are performed to verify the rationality of the obtained solutions, and the influences of contact transfer coefficient, partition coefficient, and the thermo-osmosis coefficient on the thermal consolidation of the bilayered saturated soil are illustrated and discussed. Neglecting the thermal contact resistance would overestimate the thermal consolidation behavior of the bilayered saturated soils. The calculated excess pore water pressure and displacement considering thermo-osmosis effect are much larger than those without thermo-osmosis effect.