Vascular endothelial growth factor (VEGF) is essential for normal and pathological angiogenesis. However, the signaling pathways linked to gene regulation in VEGF-induced angiogenesis are not fully understood. Here we demonstrate a critical role of protein kinase D (PKD) and histone deacetylase 5 (HDAC5) in VEGF-induced gene expression and angiogenesis. We found that VEGF stimulated HDAC5 phosphorylation and nuclear export in endothelial cells through a VEGF receptor 2-phospholipase C␥-protein kinase C-PKD-dependent pathway. We further showed that the PKD-HDAC5 pathway mediated myocyte enhancer factor-2 transcriptional activation and a specific subset of gene expression in response to VEGF, including NR4A1, an orphan nuclear receptor involved in angiogenesis. Specifically, inhibition of PKD by overexpression of the PKD kinase-negative mutant prevents VEGF-induced HDAC5 phosphorylation and nuclear export as well as NR4A1 induction. Moreover, a mutant of HDAC5 specifically deficient in PKD-dependent phosphorylation inhibited VEGF-mediated NR4A1 expression, endothelial cell migration, and in vitro angiogenesis. These findings suggest that the PKD-HDAC5 pathway plays an important role in VEGF regulation of gene transcription and angiogenesis.
Dynamic nucleocytoplasmic shuttling of class IIa histone deacetylases (HDACs) is a fundamental mechanism regulating gene transcription. Recent studies have identified several protein kinases that phosphorylate HDAC5, leading to its exportation from the nucleus. However, the negative regulatory mechanisms for HDAC5 nuclear exclusion remain largely unknown. Here we show that cAMPactivated protein kinase A (PKA) specifically phosphorylates HDAC5 and prevents its export from the nucleus, leading to suppression of gene transcription. PKA interacts directly with HDAC5 and phosphorylates HDAC5 at serine 280, an evolutionarily conserved site. Phosphorylation of HDAC5 by PKA interrupts the association of HDAC5 with protein chaperone 14-3-3 and hence inhibits stress signal-induced nuclear export of HDAC5. An HDAC5 mutant that mimics PKA-dependent phosphorylation localizes in the nucleus and acts as a dominant inhibitor for myocyte enhancer factor 2 transcriptional activity. Molecular manipulations of HDAC5 show that PKA-phosphorylated HDAC5 inhibits cardiac fetal gene expression and cardiomyocyte hypertrophy. Our findings identify HDAC5 as a substrate of PKA and reveal a cAMP/PKA-dependent pathway that controls HDAC5 nucleocytoplasmic shuttling and represses gene transcription. This pathway may represent a mechanism by which cAMP/PKA signaling modulates a wide range of biological functions and human diseases such as cardiomyopathy.nucleocytoplasmic shuttling | phosphorylation G ene transcription is governed in part by the acetylation and deacetylation of histones, the latter of which is mediated by histone deacetylases (HDACs) (1-4). In particular, class IIa HDACs, such as HDAC5, acting as transcriptional repressors, have been implicated in cardiac hypertrophy, skeletal muscle differentiation, and angiogenesis (5-10). Dynamic nucleocytoplasmic shuttling has been proposed as a fundamental mechanism regulating the function of class IIa HDACs (1, 11-13). Recent studies have identified several protein kinases, including calmodulin-dependent protein kinases (CaMKs), protein kinase D (PKD) and salt-inducible kinase, that phosphorylate HDAC5, leading to its export from the nucleus (1, 9, 14). However, much less is understood about the negative regulatory mechanisms for the nuclear exclusion of HDAC5 (15). To date, specific protein kinases that may inhibit export of HDAC5 from the nucleus have not been identified.The cAMP/protein kinase A (PKA) signaling pathway regulates a variety of cellular functions and numerous important biological processes (16,17). Many of the effects of cAMP/PKA are mediated via changes in gene transcription. A large body of research has defined the cAMP-response element binding (CREB) proteins as PKA substrates that mediate an increase in gene expression in response to cAMP (18)(19)(20). However, whether and how the cAMP/PKA pathway inhibits gene expression remains unclear. In this study, we found that cAMP/PKA signaling represses gene transcription and cardiomyocyte hypertrophy by phosphorylating HDAC5 ...
The vascular endothelium plays a fundamental role in the health and disease of the cardiovascular system. The molecular mechanisms regulating endothelial homeostasis, however, remain incompletely understood. CCN3, a member of the CCN (Cyr61, Ctgf, Nov) family of cell growth and differentiation regulators, has been shown to play an important role in numerous cell types. The function of CCN3 in endothelial cells has yet to be elucidated. Immunohistochemical analysis of CCN3 expression in mouse tissues revealed robust immunoreactivity in the endothelium of large arteries, small resistance vessels, and veins. We found that CCN3 expression in human umbilical vein endothelial cells (HUVECs) is transcriptionally induced by laminar shear stress (LSS) and HMG CoAreductase inhibitors (statins). Promoter analyses identified the transcription factor Kruppel-like factor 2 (KLF2) as a direct regulator of CCN3 expression. In contrast to LSS, proinflammatory cytokines reduced CCN3 expression. Adenoviral overexpression of CCN3 in HUVEC markedly inhibited the cytokine-mediated induction of vascular adhesion molecule-1 (VCAM-1). Consistent with this observation, CCN3 significantly reduced monocyte adhesion. Conversely, CCN3 knockdown in HUVECs resulted in enhancement of cytokine-induced VCAM-1 expression. Concordant effects were observed on monocyte adhesion. Gain and loss-offunction mechanistic studies demonstrated that CCN3 negatively regulates nuclear factor kappaB (NF-κB) activity by reducing its translocation into the nucleus and subsequent binding to the VCAM-1 promoter, suggesting that CCN3's anti-inflammatory effects occur secondary to inhibition of NF-κB nuclear accumulation. This study identifies CCN3 as a novel regulator of endothelial proinflammatory activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.