The precise roles played by the transmembrane receptor tyrosine kinase c-kit and its ligand stem cell factor in early T cell development are difficult to study. Using cloned Pax5-deficient progenitor B cells, we show that following Notch signaling, which induces their commitment to the T cell developmental pathway, c-kit expression is rapidly up-regulated at both the transcriptional and cell surface level. Using either an anti-c-kit monoclonal antibody or Gleevec, a pharmacological inhibitor of c-kit signaling, we show that the Notch-induced T cell differentiation of either Pax5-deficient progenitor B cells, or the equivalent cell from the bone marrow of normal mice, is strictly dependent on c-kit signaling, whereas the differentiation of normal progenitors into the B cell lineage is not. Moreover, we show that the Notch and IL-7 signalinginduced proliferation and differentiation of CD44 + CD25 -c-kit high and CD44 + CD25 + ckit high thymocytes along the T cell, but not natural killer cell or macrophage, pathway also requires c-kit signaling, whereas the Notch-induced proliferation and differentiation of CD44 -CD25 + c-kit int cells along the T cell pathway is independent of c-kit. These results further highlight the complex inter-relationships existing between c-kit, Notch and IL-7 receptor signaling that control the proliferation and differentiation of early T cell progenitors.