We have used an inhibiting antibody to determine whether preimmune versus antigen-experienced B cells differ in their requisites for BLyS, a cytokine that controls differentiation and survival. Whereas in vivo BLyS inhibition profoundly reduced naïve B cell numbers and primary immune responses, it had a markedly smaller effect on memory B cells and long-lived plasma cells, as well as secondary immune responses. There was heterogeneity within the memory pools, because IgM-bearing memory cells were sensitive to BLyS depletion whereas IgG-bearing memory cells were not, although both were more resistant than naïve cells. There was also heterogeneity within B1 pools, as splenic but not peritoneal B1 cells were diminished by anti-BLyS treatment, yet the number of natural antibody-secreting cells remained constant. Together, these findings show that memory B cells and natural antibodysecreting cells are BLyS-independent and suggest that these pools can be separately manipulated.
Developing B cells undergo selection at multiple checkpoints to eliminate autoreactive clones. We analyzed B cell kinetics in the NOD mouse to establish whether these checkpoints are intact. Our results show that although bone marrow production is normal in NOD mice, transitional (TR) B cell production collapses at 3 wk of age, reflecting a lack of successful immature B cell migration to the periphery. This yields delayed establishment of the follicular pool and a lack of selection at the TR checkpoint, such that virtually all immature B cells that exit the bone marrow mature without further selection. These findings suggest that compromised TR B cell generation in NOD mice yields relaxed TR selection, affording autoreactive specificities access to mature pools.
Immunoreceptor tyrosine-based activation motifs (ITAMs) are involved in the transduction of signals necessary for activation, differentiation, and survival in hematopoietic cells. Several viruses have been shown to encode ITAM-containing transmembrane proteins. Although expression of these viral proteins has in some cases been shown to transform nonhematopoietic cells, a causal role for a functional ITAM in this process has not been elucidated. To examine the potential transforming properties of ITAM-containing proteins, a recombinant protein consisting of ITAM-containing cytoplasmic regions of the B-cell antigen receptor was expressed in immortalized murine mammary epithelial and fibroblast cells. Mammary epithelial cells expressing this construct exhibited depolarized morphology in three-dimensional cultures. This transformed phenotype was characterized by a loss of anchorage dependence and hallmarks of epithelial to mesenchymal transition. Fibroblasts expressing this ITAM construct also lost contact inhibition and anchorage dependence. The transformed phenotype seen in both cell types was abrogated upon tyrosine to phenylalanine substitutions of the ITAMs. Inhibition of Syk tyrosine kinase, which associates with the ITAM, also prevented cell transformation. Our results indicate that expression of a nonviral ITAM-containing protein is sufficient for cell transformation. Despite lacking intrinsic enzymatic activity, ITAM-containing proteins can function as potent oncoproteins by scaffolding downstream mediators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.