High-sensitivity biomedical sensors could make it possible to detect and classify chemical and biological species in a variety of applications, from disease diagnosis to medication discovery, thus, boosting the likelihood of life-saving intervention. Synthesized nanowires have already produced advancements in a variety of sectors, including biological sensors over the last decade. When compared to macro-sized materials, the nanowires’ large surface area-to-volume ratio increased sensitivity. Their applications for biomarker, viral, and DNA detection, as well as drug discovery, are also discussed. Self-powering, reusability, sensitivity in high ionic strength solvents, and long-term stability are all examples of recent developments. Shortly, the nanowire is likely to lead to major improvements in biomedical sensors. This review provides a full overview of the nanowire sensor’s working principle and production procedure. We have discussed how to produce nanowires that can be utilized as biosensors for different bacteria and pathogens, protease, DNA and RNA, neurotransmitters, and chemical compounds. Biosensing technology has dramatically improved because of the introduction of nanowires in biosensors. This is a result of the application of new biorecognition components and transducers, improvements in the manufacture, design, and miniaturization of nanostructured devices at the micron scale, and unique approaches for the synthesis of nanowires. The versatility, robustness, and dynamic nature of sensing technologies have all improved thanks to the usage of nanowires.