Cobalt ferrite (CoFe2O4), an inverse spinal ferrite has high permeability, good saturation 1magnetization and no preferred direction of magnetization, high Curie temperature, and high electromagnetic performance. In the present work 0.2M cobalt nitrate 0.3M ferric nitrate and 0.4 M citric acid is used to synthesis cobalt ferrite nanoparticle by sol technique. As the magnetic property depends on the grain size of the synthesized nanoparticle, metal nitrate to citric acid ratio is varied from 0.8, 0.6 and 0.4 and the structural, functional morphological and magnetic characteristics are analyzed. The structural analysis shows the decrease in the average crystallite from 37 to 27nm when CA/MN ratio decreases from 0.8 to 0.4. The strain is directly proportion dislocation density and it reflects the growth of the average grain size, and in the present study, it reflects the same. The calculated lattice parameter is found to be close to 8.373 Å and the volume of the cell is found to be 5.63x10-28 m is close to the standard value for the cobalt ferrite nanoparticles. From the EDS spectrum, the presence of Co, Fe, and O in the synthesized nanoparticles are noted. Functional groups analysis by FTIR shows the presence of organic sources. Surface morphology by Sc electron microscope shows the distribution of spherical sized nanoparticles agglomerated in different sizes and the grain size calculated by image J software are close to the calculated value by Scherrer formula from XRD.Cobalt ferrite (CoFe2O4), an inverse spinal ferrite has high permeability, good saturation 1magnetization and no preferred direction of magnetization, high Curie temperature, and high electromagnetic performance. In the present work 0.2M cobalt nitrate M ferric nitrate and 0.4 M citric acid is used to synthesis cobalt ferrite nanoparticle by sol-gel technique. As the magnetic property depends on the grain size of the synthesized nanoparticle, metal nitrate to citric acid ratio is varied from 0.8, 0.6 and 0.4 and the structural, functional morphological and magnetic characteristics are analyzed. The structural analysis shows the decrease in the average crystallite from 37 to 27nm when CA/MN ratio decreases from 0.8 to 0.4. The strain is directly proportional to dislocation density and it reflects the growth of the average grain size, and in the present study, it reflects the same. The calculated lattice parameter is found to and the volume of the cell is found to the standard value for the cobalt ferrite nanoparticles. From the EDS spectrum, the presence of Co, Fe, and O in the synthesized nanoparticles are noted. Functional groups analysis by FTIR shows the presence of organic sources. Surface morphology by Scanning electron microscope shows the distribution of spherical sized nanoparticles agglomerated in different sizes and the grain size calculated by image J software are close to the calculated value by Scherrer RD, FTIR, SEM, VSM I.