Type III secretion systems (T3SSs) are complex units that consist of many proteins. Often the proteins are encoded as a cohesive unit on virulence plasmids, but several systems have their various components dispersed around the chromosome. The Yersinia enterocolitica Ysa T3SS is such a system, where the apparatus genes, some regulatory genes, and four genes encoding secreted proteins (ysp genes) are contained in a single locus. The remaining ysp genes and at least one additional regulator are found elsewhere on the chromosome. Expression of ysa genes requires conditions of high ionic strength, neutral/ basic pH, and low temperatures (26°C) and is stimulated by exposure to solid surfaces. The AraC-like regulator YsaE and the dual-function chaperone/regulator SycB are required to stimulate the sycB promoter, which transcribes sycB and probably yspBCDA as well. The putative phosphorelay proteins YsrRS (located at the distal end of the ysa locus) and RcsB, the response regulator of the RcsBCD phosphorelay system, are required to initiate transcription at the ysaE promoter, which drives transcription of many apparatus genes. In this work, we sought to determine which ysp genes were coordinately regulated with the genes within the ysa locus. We found that six unlinked ysp genes responded to NaCl and required YsaE/SycB, YsrRS, and RcsB for expression. Three ysp genes had unique patterns, one of which was unaffected by all elements tested except NaCl. Thus, while the ysp genes were likely to have been acquired independently, most have acquired a synchronous regulatory pattern.