Abstract. Historical warming forms a sequence of steady-state regimes punctuated by abrupt shifts. These changes are regulated by a heat engine spanning the tropical Pacific Ocean teleconnected to a broader climate network. The eastern-central Pacific maintains steady-state conditions, delivering heat to the Western Pacific warm pool. They form a heat pump with heat moving from the cold to the warm reservoir, sustained by kinetic energy. The two reservoirs exchange heat on a range of timescales, with oscillatory behaviour that intensifies under forcing. The heat engine is part of a network of oscillations and circulation interacting on a range of timescales. The process is self-regulating: steady-state regimes persist until they become unstable due to an over- or under-supply of heat for dissipation, shifting warmer or cooler to a new stable state. Pre-industrial climate was in free mode, characterised by a loosely-coupled ocean-atmosphere with limited circulation, moving into forced mode in the latter 20th century, characterised by tighter coupling and stronger circulation through the tropical Pacific with more active teleconnections globally. Continued forcing produces a stepladder-like pattern of warming. Most shifts coincide with phase changes in decadal oscillations, switching from slower to faster modes of dissipation. El Niño events combine with regime shifts to propagate heat from the oceans to land and from the tropics to higher latitudes. The most recent shift commenced in the warm pool in December 2012, ending the so-called hiatus (1997–2013), global mean surface temperatures warming abruptly by ~0.25 °C in 2014–15.