Abstract:Liquid metal MHD (Magneto-Hydro-Dynamic) systems can be employed to produce electricity from a wide range of heat resources. In such a system, a low-boiling organic fluid and a high-temperature liquid metal fluid mix. The former evaporates, and carries the latter to flow through an MHD channel, where the electricity is generated. The mixing process and the gas-liquid flow characteristics will have a significant effect on the power generating efficiency. In the present work, trifluorotrichloroethane (R113) was chosen as the organic fluid, and gallium (Ga) as the liquid metal, respectively. Numerical study was subsequently carried out on the gas-liquid flow and heat transfer in a self-designed spherical mixer. The effects of the main factors, including the inlet velocities and inlet temperatures of Ga and R113, were separately determined, with suggested values or ranges discussed in detail.