During the past few decades, the active chilled beam (ACB) system has become increasingly prevalent worldwide as a promising air conditioning and mechanical ventilation (ACMV) system. It is acknowledged that ACB systems have the advantages of providing high energy efficiency, good thermal comfort, and satisfied noise control with a lower space requirement. In modern society, the thermal discomfort and excessive energy consumption are the two major concerns for ACMV systems. People, especially in developed countries, spend substantial of their time in air-conditioned rooms. The poor air quality and inferior thermal condition incur plenty of uncomfortable sensations and even give rise to sicknesses such as sick building syndrome. One of the most common and serious problems is sensation of draught, which is mainly caused by the unpleasant cooling of air movement. Therefore, it is significantly important to evaluate the air distribution and thermal comfort for ACB systems. However, the previous studies mainly focused on cooling capacity, energy-saving effect and mechanical optimization of ACB systems. The studies on air distribution and thermal comfort are still inadequate to provide a comprehensive perspective on ACB systems. In order to fulfil the gaps, the airflow pattern is experimentally and numerically studied for ACB systems. Through experiments, an un-uniform air distribution is found near the nozzles in ACB terminals and this found distribution has a great chance to cause uncomfortable feeling such as draught in the occupied zone. A three-dimensional computational fluid dynamics (CFD) model for ACB terminal is built and validated by particular experiments. A proper strategy to balance the air distribution is proposed and validated by CFD simulation. Besides, the velocity contours near the ceilings are captured and the characteristics of Coandă effect, self-similarity, and turbulence intensity for air jet are discussed under various air supply temperatures and pressures. In addition, the effects of the heat sources' configuration and strength on thermal comfort are experimentally investigated in a mock-up room with ACB systems. The full-scale