The paper shows the effect of the probe on the performance of a transonic axial speed compressor. The unobstructed flow case with the experimental data was validated and used as a guide for all subsequent study cases. The aerodynamic performance for different probe parameters were calculated numerically using ANSYS-CFX. This covered the results on compressor output from changing probe axial positions, the radial immersion depths, the size of the probe, and the total number of probes. The findings were evaluated in relation to the total pressure ratio, performance, margin of deflation and stability. The velocity part distributions further showed that the probe block and raises the flow Mach value, which is the explanation why the compressor rotor’s total pressure ratio is lost. In fact, the parameters of the sample will significantly influence the calculation outcomes and affect the standard margin. The range of stability was also affected, which changes the performance trend from the choke to the stall. Consequently, the collection of correct probe parameters with fewer impact on compressor output is addressed.