The nonlinear equations of motion derived in Part I are used to investigate the response of an inextensional, symmetric angle-ply graphite-epoxy beam to a harmonic base-excitation along the flapwise direction. The equations contain bending-twisting couplings and quadratic and cubic nonlinearities due to curvature and inertia. The analysis focuses on the case of primary resonance of the first flexural-torsional (flapwise-torsional) mode when its frequency is approximately one-half the frequency of the first out-of-plane flexural (chordwide) mode. A combination of the fundamental-matrix method and the method of multiple scales is used to derive four first-order ordinary-differential equations to describe the time variation of the amplitudes and phases of the interacting modes with damping, nonlinearity, and resonances. The eigenvalues of the Jacobian matrix of the modulation equations are used to determine the stability and bifurcations of their constant solutions, and Floquet theory is used to determine the stability and bifurcations of their limit-cycle solutions. Hopf bifurcations, symmetry-breaking bifurcations, period-multiplying sequences, and chaotic solutions of the modulation equations are studied. Chaotic solutions are identified from their frequency spectra, Poincar6 sections, and Lyapunov's exponents. The results show that the beam motion may be nonplanar although the input force is planar. Nonplanar responses may be periodic, periodically modulated, or chaotically modulated motions.