2015
DOI: 10.1134/s1995423915030076
|View full text |Cite
|
Sign up to set email alerts
|

Numerical solving an inverse boundary value problem of heat conduction using Volterra equations of the first kind

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
3
2
2

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(2 citation statements)
references
References 2 publications
0
1
0
1
Order By: Relevance
“…The inverse problems of the dynamic usually reduced to solving Volterra integral equations of the first kind [2,3,6]. In the case of nonlinear dynamical systems, the problem is to determine the input effect () t  based on a given response () yt and a mathematical model in the form of a polynomial Volterra integral equation of the first kind, in particular the second degree [1,7,8,9]: The classic approach to solving this problem is the use of quadrature methods [2,5,8,9]. Since the problem is incorrect and experimental data are usually given with inaccuracy, it is necessary to use regularization methods.…”
Section: Introductionmentioning
confidence: 99%
“…The inverse problems of the dynamic usually reduced to solving Volterra integral equations of the first kind [2,3,6]. In the case of nonlinear dynamical systems, the problem is to determine the input effect () t  based on a given response () yt and a mathematical model in the form of a polynomial Volterra integral equation of the first kind, in particular the second degree [1,7,8,9]: The classic approach to solving this problem is the use of quadrature methods [2,5,8,9]. Since the problem is incorrect and experimental data are usually given with inaccuracy, it is necessary to use regularization methods.…”
Section: Introductionmentioning
confidence: 99%
“…При этом сначала на оставшейся части границы восстанавливают граничную функцию, а уже затем, используя полученные результаты, находят решение поставленной задачи во внутренних точках. Исследованиям в этой области посвящены, например, работы [7][8][9][10][11][12][13]. Другое динамично развивающееся направление решения задач тепло-и массопереноса связано с разработкой и исследованием численных методов, основанных на использовании конечноразностных и дифференциально-разностных схем.…”
Section: Introductionunclassified