Ice will form in winter in high-latitude areas of China. As the external temperature rises, the ice cover will generate thermal expansion force on the restrained object. Based on the single-factor sensitivity method, the thermal solid coupling model is used to calculate the ice layer thermal stress. The intensity of the water quality monitoring system in China's high latitude icing period is modeled and calculated. The results show that with the increase of the external temperature rise rate, the external initial temperature decreases and the thickness of the ice layer increases, the expansion force of the ice layer temperature increases, and the stress field of the ice layer presents nonlinear distribution. The extreme point is located at 1/3 of the ice layer thickness. The water quality monitoring system will produce high stress at the edge of the body, which should be paid attention to when it is concentrated on engineering use.