The global depression population is showing a significant increase. Hemerocallis fulva L. is a common Traditional Chinese Medicine (TCM). Its flower buds are known to have ability to clear away heat and dampness, detoxify, and relieve depression. Ancient TCM literature shows that its roots have a beneficial effect in calming the spirit and even the temper in order to reduce the feeling of melancholy. Therefore, it is inferred that the root of Hemerocallis fulva L. can be used as a therapeutic medicine for depression. This study aims to uncover the pharmacological mechanism of the antidepressant effect of Hemerocallis Radix (HR) through network pharmacology method. During the analysis, 11 active components were obtained and screened using ADME—absorption, distribution, metabolism, and excretion— method. Furthermore, 267 HR targets and 740 depressive disorder (DD) targets were gathered from various databases. Then protein–protein interaction (PPI) network of HR and DD targets were constructed and cluster analysis was applied to further explore the connection between the targets. In addition, gene ontology (GO) enrichment and pathway analysis was applied to further verify that the biological process related to the target protein is associated with the occurrence of depression disorder. In conclusion, the most important bioactive components—anthraquinone, kaempferol, and vanillic acid—can alleviate depression symptoms by regulating MAOA, MAOB, and ESR1. The proposed network pharmacology strategy provides an integrating method to explore the therapeutic mechanism of multi-component drugs on a systematic level.