“…In view of the shortcomings in Babich and Roussel‐Dupré () and given new experimental (Briggs et al, ; Chilingarian et al, , , , , ; Connaughton et al, ; Cummer et al, , ; Gurevich et al, ; Ishtiaq et al, ; Kelley et al, ; Kuroda et al, ; Marisaldi, Fuschino et al, ; Marisaldi, Tavani et al, ; Martin & Alves, ; Starodubtsev et al, ; Tavani et al, ; Tsuchiya et al, , , , ) and computational (Babich, ; Babich et al, , ; Babich, Bochkov, Kutsyk et al, ; Babich, Bochkov, Donskoĭ et al, ; Babich, Bochkov, Kutsyk et al, ; Babich, Bochkov, Dwyer et al, ; Babich et al, ; Carlson et al, ; Celestin, Xu, & Pasko, ; Dwyer, ; Dwyer, Grefenstette, & Smith, ; Kelley et al, ; Tsuchiya et al, ; Xu, Celestin, & Pasko, ) data on thunderstorm γ rays and neutrons, reanalyzing of the problem of the production by thunderstorms is expedient. The new analysis is based not on a limited number of detections of thunderstorm neutrons as in Babich and Roussel‐Dupré () but on a vast amount of new data obtained from detecting of thunderstorm ground enhancements, i.e., enhanced fluxes of high‐energy electrons, hard γ rays, and neutrons on the Earth's surface, which have been copiously collected on Mount Aragats, Armenia (3250 m above sea level) (Chilingarian et al, , , , , ) and at other sites worldwide: Japan (sea level and 2770 m above sea level) (Tsuchiya et al, , , ); Tibet, China (4300 m above sea level) (Tsuchiya et al, ); Himalayas, India (2743 m above sea level) (Ishtiaq et al, ; Shah et al, ); and Tien Shan, Kazakhstan (3340 m above sea level) (Gurevich et al,…”