Summary
Ground observatory and satellite-based determinations of temporal variations in the geomagnetic field probe a decadal to annual time scale range where Earth’s core slow, inertialess convective motions and rapidly propagating, inertia-bearing hydromagnetic waves are in interplay. Here we numerically model and jointly investigate these two important features with the help of a geodynamo simulation that (to date) is the closest to the dynamical regime of Earth’s core. This model also considerably enlarges the scope of a previous asymptotic scaling analysis, which in turn strengthens the relevance of the approach to describe Earth’s core dynamics. Three classes of hydrodynamic and hydromagnetic waves are identified in the model output, all with propagation velocity largely exceeding that of convective advection: axisymmetric, geostrophic Alfvén torsional waves, and non-axisymmetric, quasi-geostrophic Alfvén and Rossby waves. The contribution of these waves to the geomagnetic acceleration amounts to an enrichment and flattening of its energy density spectral profile at decadal time scales, thereby providing a constraint on the extent of the f−4 range observed in the geomagnetic frequency power spectrum. As the model approaches Earth’s core conditions, this spectral broadening arises because the decreasing inertia allows for waves at increasing frequencies. Through non-linear energy transfers with convection underlain by Lorentz stresses, these waves also extract an increasing amount of energy from the underlying convection as their key time scale decreases towards a realistic value. The flow and magnetic acceleration energies carried by waves both linearly increase with the ratio of the magnetic diffusion time scale to the Alfvén time scale, highlighting the dominance of Alfvén waves in the signal and the stabilising control of magnetic dissipation at non-axisymmetric scales. Extrapolation of the results to Earth’s core conditions supports the detectability of Alfvén waves in geomagnetic observations, either as axisymmetric torsional oscillations or through the geomagnetic jerks caused by non-axisymmetric waves. In contrast, Rossby waves appear to be too fast and carry too little magnetic energy to be detectable in geomagnetic acceleration signals of limited spatio-temporal resolution.