A novel silicon-containing phthalonitrile monomer named bis(4-(4′-(4′-phenoxy)phenyl)phenyl)dimethylsilane phthalonitrile (SiBPPN) was successfully designed and synthesized. The chemical structure was characterized by proton nuclear magnetic resonance and Fourier transform infrared (FTIR) analyses, and its molecular weight was determined by mass spectrometry. Its melting point is lower than that of 4,4′-bis(3,4-dicyanophenoxy)biphenyl (BPPN), which has no silicon atom, and its solubility is also much better than that of BPPN. The curing behavior of SiBPPN was studied by differential scanning calorimetry and FTIR analyses in detail. The thermal and thermomechanical properties of the polymer and laminate were studied by thermogravimetric analysis and dynamic mechanical analysis. The results show that the cured SiBPPN (c-SiBPPN) possesses excellent thermal and mechanical properties. Under nitrogen atmosphere, its residual weight ratio at 800°C is 81.5% and the 5% thermal degradation temperature is 546°C. In addition, quartz-fiber (QF)-reinforced c-SiBPPN composites exhibit mechanical properties superior to those of QF-reinforced cured BPPN composites. The interlaminar shear strength and bending strength of the composite are 30.44 and 389 MPa at room temperature, and the interlaminar shear strength and bending strength of the composite are 22.25 and 339 MPa at 300°C.