In this paper, a multistage pressure reducing valve is presented. The main frequency of vortex-induced vibration is evaluated by monitoring the lift coefficient during vortex shedding and the pressure fluctuation formed after vortex shedding in the flow field. By comparative analysis of two different methods, the number of vortices is relatively small at small openings. Due to the limitations of the location and quantity of monitoring points, accurately locating the most active position where pressure fluctuation occurs is difficult. Monitoring the lift coefficient is more suitable to evaluate the main frequency of vortex-induced vibration. At medium and large openings, due to the increase in the number of vortices, the superposition effect of the pressure fluctuation and the influence of the flow channel shape is more obvious. Monitoring the pressure fluctuation is more appropriate to evaluate the main frequency of vortex-induced vibration the valve. Therefore, a combination of the two methods can more accurately evaluate the vortex-induced vibration characteristics of the valve. When monitoring pressure fluctuation, the position and number of monitoring points directly affect the evaluation accuracy. The pressure fluctuations around the outlet and the multilayer sleeve are more active. It is more meaningful to monitor the pressure fluctuation at these points. The main frequency of the pressure fluctuation at these points better reflects the vortex-induced vibration characteristics of the valve.