Let $\{X_k:k\ge1\}$ be a linear process with values in the separable Hilbert
space $L_2(\mu)$ given by $X_k=\sum_{j=0}^\infty(j+1)^{-D}\varepsilon_{k-j}$
for each $k\ge1$, where $D$ is defined by $Df=\{d(s)f(s):s\in\mathbb S\}$ for
each $f\in L_2(\mu)$ with $d:\mathbb S\to\mathbb R$ and
$\{\varepsilon_k:k\in\mathbb Z\}$ are independent and identically distributed
$L_2(\mu)$-valued random elements with $\operatorname E\varepsilon_0=0$ and
$\operatorname E\|\varepsilon_0\|^2<\infty$. We establish sufficient conditions
for the functional central limit theorem for $\{X_k:k\ge1\}$ when the series of
operator norms $\sum_{j=0}^\infty\|(j+1)^{-D}\|$ diverges and show that the
limit process generates an operator self-similar process.Comment: 22 page