Following some recent works on risk aggregation and capital allocation for mixed Erlang risks joined by Sarmanov's multivariate distribution, in this paper we present some closed-form formulas for the same topic by considering, however, a different kernel function for Sarmanov's distribution, not previously studied in this context. The risk aggregation and capital allocation formulas are derived and numerically illustrated in the general framework of stop-loss reinsurance, and then in the particular case with no stop-loss reinsurance. A discussion of the dependency structure of the considered distribution, based on Pearson's correlation coefficient, is also presented for different kernel functions and illustrated in the bivariate case.