Aesthetics has been the subject of long-standing debates by philosophers and psychologists alike. In psychology, it is generally agreed that aesthetic experience results from an interaction between perception, cognition, and emotion. By experimental means, this triad has been studied in the field of experimental aesthetics, which aims to gain a better understanding of how aesthetic experience relates to fundamental principles of human visual perception and brain processes. Recently, researchers in computer vision have also gained interest in the topic, giving rise to the field of computational aesthetics. With computing hardware and methodology developing at a high pace, the modeling of perceptually relevant aspect of aesthetic stimuli has a huge potential. In this review, we present an overview of recent developments in computational aesthetics and how they relate to experimental studies. In the first part, we cover topics such as the prediction of ratings, style and artist identification as well as computational methods in art history, such as the detection of influences among artists or forgeries. We also describe currently used computational algorithms, such as classifiers and deep neural networks. In the second part, we summarize results from the field of experimental aesthetics and cover several isolated image properties that are believed to have a effect on the aesthetic appeal of visual stimuli. Their relation to each other and to findings from computational aesthetics are discussed. Moreover, we compare the strategies in the two fields of research and suggest that both fields would greatly profit from a joined research effort. We hope to encourage researchers from both disciplines to work more closely together in order to understand visual aesthetics from an integrated point of view.