2018
DOI: 10.22363/2312-9735-2018-26-2-129-139
|View full text |Cite
|
Sign up to set email alerts
|

On the Calculation of Electromagnetic Fields in Closed Waveguides with Inhomogeneous Filling

Abstract: Кафедра прикладной информатики и теории вероятностей Российский университет дружбы народов ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198 В статье исследуются волноводы постоянного сечения с идеально проводящими стенками и произвольным заполнением. Поставлена и дискретизирована задача об отыскании нормальных мод волновода в полной векторной постановке. В рамках численных экспериментов для нескольких вариантов заполнений вычислены направляемые и эванесцентные моды волновода. Поставлена и дискретизирована зада… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 0 publications
0
2
0
Order By: Relevance
“…The second approach is based on the application of the recently proposed four potential method [30]. Numerical calculation is performed using the incomplete Galerkin method [33].…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…The second approach is based on the application of the recently proposed four potential method [30]. Numerical calculation is performed using the incomplete Galerkin method [33].…”
Section: Resultsmentioning
confidence: 99%
“…But even in the case when the permittivity and permeability are described by discontinuous functions, they turn out to be quite smooth functions. The Maple system has developed a symbolic-numerical method for finding normal modes based on a combination of this representation of the field and the incomplete Galerkin method [30], [32], [33]. Comparison of the calculation results with the results obtained using the mixed finite element method was significantly complicated by the lack of a public version of the finite element implementation.…”
Section: Introductionmentioning
confidence: 99%