Die Kontrolle der Genexpression ist eines der großen Ziele der chemischen Biologie. Gemäß dem klassischen Dogma der Molekularbiologe verläuft der Fluss der genetischen Information über die Transkription von DNA zur messenger RNA (mRNA) und durch die Translation von mRNA zu Proteinen. Auch wenn der ursprünglichen Formulierung dieses Dogmas verschiedene Aspekte hinzugefügt wurden, bleibt die Kernaussage unverändert. Eine Störung der Genexpression ist in vielen Fällen die Ursache für schwerwiegende Erkrankungen. Klassische Therapeutika, die im Allgemeinen aus kleinen Molekülen bestehen, können pathogene Proteine spezifisch binden und inhibieren. Allerdings greifen diese Wirkstoffe am Ende der Produktionskette ein und nicht alle Proteine können adressiert werden. Im Gegensatz dazu könnte ein Eingriff auf der Ebene der Transkription oder Translation die Expression der pathogenen Proteine auf ein normales Maß senken oder ganz verhindern. Als entscheidende Regulatoren der Genexpression stellen Transkriptionsfaktoren (TFs) einen interessanten Angriffspunkt zur Kontrolle der Transkription dar. TFs können über den Kontakt zu weiteren Proteinen die RNA Polymerase II rekrutieren und so die Transkription starten. Für die Translation ist die Halbwertszeit der mRNA ein entscheidender Faktor. Die Lebensdauer wird durch eine Vielzahl an Proteinen und micro RNAs (miRNAs) reguliert. MiRNAs sind kurze Oligonukleotide, die in Argonautproteine eingebaut werden können. Die daraus resultierenden RNA-induced silencing complexes (RISCs) sind in der Lage, den Abbau der mRNA einzuleiten. Sowohl TFs als auch RISCs besitzen dabei Nukleinsäure-bindende Untereinheiten, die mit spezifische Sequenzen assoziieren. In gewisser Weise ist die molekulare Erkennung der Nukleinsäuren vergleichbar mit einer Postsendung, die aufgrund der Adresse korrekt zugestellt wird. Um in diesem Bild des täglichen Lebens zu bleiben: Bei einem Wechsel des Wohnorts ist es üblich, einen Nachsendeauftrag zu stellen. Dabei wird die alte Anschrift auf den Postsendungen mit einem neuen Adressetikett überklebt und die Zustellung erfolgt an den neuen Wohnort. Das zentrale Thema dieser Dissertation ist, dieses „Umetikettieren“ auch auf TFs und RISCs zu übertragen. Hierbei ist es notwendig, die Nukleinsäure-bindenden Untereinheiten der Komplexe, also die „alte Adresse“, vollständig zu blockieren und gleichzeitig eine hohe Affinität zu einer neuen Sequenz zu erzeugen. Hierzu könnten bifunktionale Adaptormoleküle verwendet werden. Die Adaptoren für die Rekrutierung von TFs müssen in der Lage sein, sowohl die doppelsträngige DNA (dsDNA) als auch einen TF zu binden (Abbildung I). Dabei sollte eine Selbstbindung des Adaptors vermieden werden. In dieser Arbeit wurde der TF Sp1 als Ziel gewählt, da er an GC-reiche dsDNAs bindet. Dies ermöglicht die Wahl einer AT- oder GA reichen DNA-Sequenz als Ziel der Umleitung, wodurch eine Selbstbindung des Adaptors minimiert werden sollte. Zur Erkennung der DNA war geplant, Pyrrol-Imidazol-Polyamide (PIPs), triplexbildende Oligonukleotide (TFOs) oder pseudokomplementäre PNAs einzusetzen. Für Letztere war es möglich, eine neue Syntheseroute zu einem Fmoc geschützten Thiouracil-Monomer zu entwerfen. Dabei konnte eine selektive Alkylierung an der N1-Position des Thiouracils durchgeführt werden. Auf Basis der PIPs und der TFOs wurden jeweils verschiedene Adaptoren entworfen, deren Bindung zu ihren Zielen mit Band-Shift-Experimenten und im Fall der PIPs zusätzlich mit fluoreszenzbasierten Pulldown-Experimenten gezeigt wurde. Im Rahmen dieser Versuche zeigte sich, dass die PIP-basierten Systeme deutlich besser an die Zielsequenzen banden als die TFO-basierten Adaptoren. Das Konjugat K5a besaß hierbei die besten Eigenschaften. Weiterhin konnte mit diesem Adaptor in Pulldown-Experimenten gezeigt werden, dass Sp1 auf eine nicht kanonische AT-reiche Bindestelle umgeleitet wurde. Im Anschluss konnte das Sp1 in Western-Blots detektiert werden. Des Weiteren ließ sich zeigen, dass K5a in einem HeLa Lysat über mehrere Stunden stabil war und somit eine Anwendung in Zellkulturexperimenten möglich sein sollte. Für die Rekrutierung der RISCs war lediglich eine Erkennung zweier einzelsträngiger RNA-Abschnitte notwendig. Hierzu wurden zwei LNAs oder LNA/DNA-Mixmere verwendet, die über einen Linker verknüpft waren (Abbildung I). Als Folge dieses Aufbaus mussten die beiden Adaptorhälften orthogonal sein, da eine Selbstbindung des Adaptors leichter als bei den TF-Adaptoren auftreten konnte. Diese Adaptoren wurden mit Band-Shift- und fluoreszenzbasierten Pulldown-Experimenten auf ihre Fähigkeit, eine Cy5-gelabelte miRNA auf eine Ziel-RNA umzuleiten, überprüft. Es konnte beobachtet werden, dass all-LNA Adaptoren sehr viele off-target-Effekt aufwiesen, welche die Umleitung von miRNAs verhinderte. Im Gegensatz dazu konnten mit DNA/LNA-Mixmeren eine vollständige Umleitung von miRNA-Modellen beobachtet werden. Es war ebenfalls möglich, spezifische RISCs aus HeLa-Lysaten mit unterschiedlichen Adaptoren in Pulldown-Experimenten zu isolieren und in nachfolgenden Western-Blots zu detektieren. Nachdem gezeigt war, dass eine Umleitung in vitro gelang, sollte die Funktion der Adaptoren in Zellkulturexperimenten geprüft werden. Allerdings konnten in diesen Versuchen keine eindeutigen Ergebnisse erhalten werden, sodass die biologische Relevanz der RISC-Umleitung bislang noch nicht bestätigt werden konnte.