Oxide-semiconductor interface quality of high-pressure reactive sputtered (HPRS) TiO 2 films annealed in O 2 at temperatures ranging from 600 to 900 • C, and atomic layer deposited (ALD) TiO 2 films grown at 225 or 275 • C from TiCl 4 or Ti(OC 2 H 5 ) 4 , and annealed at 750 • C in O 2 , has been studied on silicon substrates. Our attention has been focused on the interfacial state and disordered-induced gap state densities. From our results, HPRS films annealed at 900 • C in oxygen atmosphere exhibit the best characteristics, with D it density being the lowest value measured in this work (5-6 × 10 11 cm −2 eV −1 ), and undetectable conductance transients within our experimental limits. This result can be due to two contributions: the increase of the SiO 2 film thickness and the crystallinity, since in the films annealed at 900 • C rutile is the dominant crystalline phase, as revealed by transmission electron microscopy and infrared spectroscopy. In the case of annealing in the range of 600-800 • C, anatase and rutile phases coexist. Disorder-induced gap state (DIGS) density is greater for 700 • C annealed HPRS films than for 750 • C annealed ALD TiO 2 films, whereas 800 • C annealing offers DIGS density values similar to ALD cases. For ALD films, the studies clearly reveal the dependence of trap densities on the chemical route used.