The present article correlates with a fuzzy hybrid technique combined with an iterative transformation technique identified as the fuzzy new iterative transform method. With the help of Atangana-Baleanu under generalized Hukuhara differentiability, we demonstrate the consistency of this method by achieving fuzzy fractional gas dynamics equations with fuzzy initial conditions. The achieved series solution was determined and contacted the estimated value of the suggested equation. To confirm our technique, three problems have been presented, and the results were estimated in fuzzy type. The lower and upper portions of the fuzzy solution in all three examples were simulated using two distinct fractional orders between 0 and 1. Because the exponential function is present, the fractional operator is nonsingular and global. It provides all forms of fuzzy solutions occurring between 0 and 1 at any fractional-order because it globalizes the dynamical behavior of the given equation. Because the fuzzy number provides the solution in fuzzy form, with upper and lower branches, fuzziness is also incorporated in the unknown quantity. It is essential to mention that the projected methodology to fuzziness is to confirm the superiority and efficiency of constructing numerical results to nonlinear fuzzy fractional partial differential equations arising in physical and complex structures.