In this paper, we designed an algorithm by applying the Laplace transform to calculate some approximate solutions for fuzzy fractional-order nonlinear equal width equations in the sense of Atangana-Baleanu-Caputo derivatives. By analyzing the fuzzy theory, the suggested technique helps the solution of the fuzzy nonlinear equal width equations be investigated as a series of expressions in which the components can be effectively recognised and produce a pair of numerical results with the uncertainty parameters. Several numerical examples are analyzed to validate convergence outcomes for the given problem to show the proposed method’s utility and capability. The simulation outcomes reveal that the fuzzy iterative transform method is an effective method for accurately and precisely studying the behavior of suggested problems. We test the developed algorithm by three different problems. The analytical analysis provided that the results of the models converge to their actual solutions at the integer-order. Furthermore, we find that the fractional derivative produces a wide range of fuzzy results.