We report a first-principles Wannier function study of the electronic structure of PdTe. Its electronic structure is found to be a broad three-dimensional Fermi surface with highly reduced correlations effects. In addition, the higher filling of the Pd d-shell, its stronger covalency resulting from the closer energy of the Pd-d and Te-p shells, and the larger crystal field effects of the Pd ion due to its near octahedral coordination all serve to weaken significantly electronic correlations in the particle-hole (spin, charge, and orbital) channel. In comparison to the Fe Chalcogenide e.g., FeSe, we highlight the essential features (quasi-two-dimensionality, proximity to half-filling, weaker covalency, and higher orbital degeneracy) of Fe-based high-temperature superconductors.PACS numbers: 31.15. 74.70.Ad, 71.15.Ap, 71.27.+a