“…They usually have carbonaceous graphitic core of <10 nm with varying degrees of oxidation (Shi, Li, & Ma, ). These fluorescent carbon nanoparticles can be synthesized from various carbon precursors such as citric acid (He et al, ; Khan, Verma, Chethana, & Nandi, ; Lan et al, ; Liu, Tian, Tian, Wang, & Yang, ; Shangguan et al, ; Shi et al, ; Shu et al, ; Wu, Li, Ling, Huang, & Jia, ; Yang et al, ; Zhang et al, ), activated carbon powder (Chai et al, ), hyaluronic acid (Zhang et al, ), phenylene diamine derivative (Cheng et al, ; Hua, Bao, & Wu, ; Liu, Y., Duan, W., et al, 2017; Song, W., Duan, W., et al, 2017; Xia, Chen, Zou, Yu, & Wang, ), flour (Zhang et al, ), 2‐azidoimidazole (Tang, Lin, Li, & Hu, ), thiomalic acid (Safavi, Ahmadi, Mohammadpour, & Zhou, ), aminosalicylic acid (Song, Y., Zhu, C., et al, 2017), sodium alginate‐tryptophan (Zhu et al, ), neutral red‐triethyl amine (Jiao et al, ), capsicum (Chen et al, ), ethanol (Gao, Ding, Zhu, & Tian, ; Qu, Zhu, Shao, Shi, & Tian, ; Zhu, Qu, Shao, Kong, & Tian, ), (3‐aminopropyl) triethoxysilane (Zou et al, ), malic acid (Zhi et al, ), folic acid (Liu et al, ), and so on. Furthermore, various cost‐effective and simple procedures have been established for their preparation that include solvothermal treatment (Chen et al, ; Zhu et al, ), thermal degradation (Shi et al, ), high temperature reflux (Lan et al, ), microwave‐assisted synthesis (He et al, ; Tang et al, ), pyrolysis (Zhang et al, , ), and oxidative acid treatment (Safavi et al, ).…”