2012 International Conference on E-Learning and E-Technologies in Education (ICEEE) 2012
DOI: 10.1109/icelete.2012.6333411
|View full text |Cite
|
Sign up to set email alerts
|

Opcodes histogram for classifying metamorphic portable executables malware

Abstract: Malware writers attempt to generate different shapes of a malware to evade the signature-based scanners. As the number of variants of a metamorphic malware is increased, the analysis of all variants and selecting the appropriate signature and updating the database of the antivirus becomes more tiresome and time-consuming. Furthermore, for automated generated metamorphic viruses, which utilize the virus kits to produce different instances, sometime it is not possible to analyze all of them. Therefore, use of so… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
32
0
2

Year Published

2015
2015
2021
2021

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 38 publications
(34 citation statements)
references
References 17 publications
0
32
0
2
Order By: Relevance
“…Algumas dessas abordagens incluem: a) modelagem estatística dos padrões de código gerados pelos motores metamórficos [5] [6] [7]; b) análise das distribuições das ocorrências de sequências de opcodes de instruções [8]; c) análise estatística composta pela combinação de métodos de ranqueamento de características de grupos de opcodes de instruções [9]; e d) análise de representações intermediárias que expressam as semânticas do código, tais como: grafos de controle de fluxo [10] [11], grafos de chamadas a APIs do sistema [12] e grafos de dependência de dados [13] [4].…”
Section: Introductionunclassified
“…Algumas dessas abordagens incluem: a) modelagem estatística dos padrões de código gerados pelos motores metamórficos [5] [6] [7]; b) análise das distribuições das ocorrências de sequências de opcodes de instruções [8]; c) análise estatística composta pela combinação de métodos de ranqueamento de características de grupos de opcodes de instruções [9]; e d) análise de representações intermediárias que expressam as semânticas do código, tais como: grafos de controle de fluxo [10] [11], grafos de chamadas a APIs do sistema [12] e grafos de dependência de dados [13] [4].…”
Section: Introductionunclassified
“…Using a threshold-based method, authors of [31] correctly classify different obfuscated versions of metamorphic viruses; in reference [32] the authors obtain a 100% detection rate using a dataset of 40 malware instances of NGCVK family, 40 benign files and 20 samples classified by authors as other virus files. Compared with our technique, this two works cope with metamorphic malware, while our domain of investigation is Android malware.…”
Section: Related Workmentioning
confidence: 99%
“…In references [31,32] the histograms of opcodes are used as a feature to find whether a file is a morphed version of another. Using a threshold-based method, authors of [31] correctly classify different obfuscated versions of metamorphic viruses; in reference [32] the authors obtain a 100% detection rate using a dataset of 40 malware instances of NGCVK family, 40 benign files and 20 samples classified by authors as other virus files.…”
Section: Related Workmentioning
confidence: 99%
“…The method described in [49] used a histogram of instruction opcode frequencies to detect morphed malware. Classification of files as malicious or benign was done y comparing the already built histograms of malware samples.…”
Section: Existing Workmentioning
confidence: 99%
“…[49] Vinod P, Harshit Jain, et.al [27] Quinghua Zhang, Douglas S. Reeves [28] Mohamed R.Chouchane, Arun Lakhotia [29] 1218 benign executables and 868 NGVCK viruses. Generated signatures using semantic summaries of the morphed malwares.…”
mentioning
confidence: 99%