Metrics & MoreArticle Recommendations
CONSPECTUS:The concept of aromaticity is one of the most fundamental principles in chemistry. It is generally accepted that planarity is a prerequisite for aromaticity, and typically the more planar the geometry of an aromatic compound is, the stronger aromatic it is. However, it is not always the case, particularly when transition metals are involved in conjugation and electron delocalization of aromatic systems, i.e., metalla-aromatics. Because of the intrinsic nature of transition-metal orbitals, besides planar geometries, the most stable molecular structures of metallaaromatic compounds could take nonplanar and even spiro geometries. In this Account, we outline several unprecedented types of metalla-aromatics developed recently in our research group.Around seven years ago, we found that 1,4-dilithio-1,3-butadienes, dilithio reagents with π-conjugation, could function as noninnocent ligands and react with low-valent transition-metal complexes, generating monocyclic metalla-aromatic compounds. Later on, by taking advantage of the unique behavior of dilithio reagents and the intrinsic nature of different transition metals, we have synthesized a series of metalla-aromatic compounds, of which four types are discussed here, and each of them represents the first of its kind. First, nearly planar aromatic dicupra[10]annulenes, a 10 π-electron aromatic system with two bridging Cu atoms participating in the orbital conjugation and electron delocalization, are synthesized by annulating two dilithio reagents with two Cu(I) complexes.Second, four kinds of spiro metalla-aromatics, featuring planar (with Pd, Pt, or Rh as the spiro atom) geometry with a whole 10π aromatic system, octahedral (tris-spiro metalla-aromatics with V as the spiro atom) geometry with an entire 40π Craig−Mobius aromatic system, tetrahedral (with Mn as the spiro atom) geometry having two independent and perpendicular 6π planar aromatic rings, and tetrahedral (with Mn as the spiro atom) geometry with one planar and one nonplanar 6π aromatic rings, respectively, are generated. In sharp contrast to spiroaromaticity with carbon acting as the spiro atom described in Organic Chemistry, the metal spiro atom herein takes part in orbital conjugation and electron delocalization. Third, nonplanar aromatic butadienyl diiron complexes are realized. Different from planar aromatic systems featuring delocalized πtype overlap, this nonplanar metalla-aromaticity is achieved by the novel σ-type overlap between the two Fe 3d xz orbitals and the butadienyl π orbital, forming a 6π aromatic system. Fourth, dinickelaferrocene, a ferrocene analogue with two aromatic nickeloles, is synthesized from our monocyclic aromatic dilithionickelole and FeBr 2 . The aromaticity of dinickelaferrocene and its nickelole ligands is realized by electron back-donation from the Fe 3d orbital to the π* orbital of nickeloles, which also deepens our understanding of the origin of aromaticity.The search for unprecedented and exciting aromatic systems, particul...