This study assesses the performance of the Weather Research and Forecasting (WRF) model using a high-resolution spatial grid (1 km) with various combinations of physical parameterization packages to simulate a severe event in August 2021 in the southeastern Brazilian coast. After determining the optimal set of physical parameterizations for representing wind patterns during this event, a year-long evaluation was conducted, covering forecast horizons of 24, 48, and 72 hours. The simulation results were compared with observational wind data from four weather stations. The findings highlight variations in the efficacy of different physical parameterization sets, with certain sets encountering challenges in accurately depicting the peak of the severe event. The most favorable results were achieved using a combination of Tiedtke (cumulus), Thompson (microphysics), TKE (boundary layer), Monin-Obukhov (surface layer), Unified-NOAH (land surface), and RRTMG (shortwave and longwave radiation). Over the one-year forecasting period, the WRF model effectively represented the overall wind pattern, including forecasts up to three days in advance (72-hour forecast horizon). Generally, the statistical metrics indicate robust model performance, even for the 72-hour forecast horizon, with correlation coefficients consistently exceeding 0.60 at all analyzed points. While the model proficiently captured wind distribution, it tended to overestimate northeast wind speed and gust intensities. Notably, forecast accuracy decreased as stations approached the ocean, exemplified by the ATPM station.